Skip to content

Layout

Layout Article

  • [ICCV19] LayoutVAE: Stochastic Scene Layout Generation From a Label Set
    • model: VAE
    • task: 根据 label set, per label layouts in existing image 进行有条件生成
  • [CVPR21] LayoutTransformer: Layout generation and completion with self attention
    • model: transformer
    • task: completion
  • [MM21] LayoutGAN++: Constrained Graphic Layout Generation via Latent Optimization
    • model: GAN
  • [ECCV22] BLT: Bidirectional layout transformer for controllable layout generation
    • model: transformer & BERT
    • task: 根据 element, category 进行有条件生成,无条件生成
    • pros:
    • hierarchical mask sampling policy,一个改进了的 mask 方法,而不是直接应用 Transformer 的 mask
    • cons:
    • 不能处理元素之间的关系
  • [CVPR23] LayoutFormer++: Conditional Graphic Layout Generation via Constraint Serialization and Decoding Space Restriction
    • model: transformer
    • condition: 根据 type, relationship, type & size 进行有条件生成, refinement, completion, 无条件生成
    • pros:
    • 灵活性和可控性强
    • A constraint serialization scheme which can handle diverse constrain
    • A sequence to sequence layout generation method
  • [CVPR23] LayoutDM: Discrete Diffusion Model for Controllable Layout Generation
    • model: diffusion
    • task: Category \(\to\) Size+Position, Category+Size \(\to\) Position, Completion, 无条件生成
    • pro:
    • padding approach to model highly structured layout data
    • masking and logit adjustment during the inference
    • cons:
    • 作者在进行训练和评估模型时,剔除了数据集中元素个数 \(\ge50\) 的 layout 数据,在输入文档具有更多元素时,模型的性能会降低
  • [CVPR23] LDGM: Unifying Layout Generation with a Decoupled Diffusion Model
    • model: diffusion
    • task: 根据 \((c,x,y,w,h)\) 五种属性进行有条件生成, refinement, completion, 无条件生成
    • pros:
    • 对于类别属性 \((c)\)、位置属性 \((x, y)\) 和大小属性 \((w, h)\) 构造了三条 timeline 分别添加噪声

Last update: August 29, 2023
Created: June 14, 2023