Skip to content

3D Scene Analysis

Note

start on: Aug 23, 2023

Principal of Indoor Scene Network Design

From the talk of Richard in 2023/9/3 - 2023/9/4

Description

  • function description
  • structural description
    • object parts
    • part relations

3C Principal

  • consistency
    • should be considered frist
    • weak prior: same class = same function
    • e.g. cycle consistency (for unpaired domain translation)
    • e.g. VAE (predictable & compressibility \(\to\) need redundancy [symmetry] )
      • bottle neck layer in neural network: force to compress
  • compactness
    • model representation
  • continuity
    • linkage between the scene (bridge gap)

Scene Hierarchy

  • symmetry \(\to\) construct graph \(\to\) tree
    • rotation
    • reflection
  • connectivity

Differences Between Scene & Shape Hierarchy

  • scene is difficult to align
  • scene has much more variations
  • real scenes are much messy
    • note that: messy \(\neq\) random
    • why messy: human action & activity (function of objects & co-occurrence of objects)
  • sub-scene indicate functional units

Problems in Complex Scene & Layouts

  • Problem #1: compare complex scene & layout

    • In scene we need focal points (= subscenes)

    • Find focal points (can be regarded as attention machoism in NLP)

      • context will make it easier
      • clustering algorithm [sig 2014]
      • find frequent & discriminate parts
      • do organize or retrieval
  • Problem #2: action-driven scene evolution

    • should consider not only see/observe
    • should consider functionality & human action
    • scene understanding = inference of human action (annotated photo \(\to\) action model \(\to\) action graph)
  • Problem #3: text-driven 3D scene synthesis
    • using scene proxy to guide
  • Problem #4: generative model of 3D scene structure

Graph Neural Networks

Dynamic Graph CNN

Signed distance field

  • signed distance from the edge of a shape
    • inside shape: negative
    • outside shape: positive
    • exactly on the shape: 0

image-20230824152525493

Marching Cube

使用 3D 空间中的一个点作为输入, 随后返回一个值

\[ f(x,y,z) \to v \]

假设在空间中的某个区域内,我们可以使用函数 \(f\) 等间距的采样一些点

不妨设函数 \(f\) 的最大值为 \(16\),最小值为 \(-32\),如果存在一个表面阈值 \(sf\),当表面阈值从 \(-32\) 增长到 \(16\) 时,均匀采样点就会逐渐消失(视频 0:45)

我们可以认为消失的点是空白的空间,而大于等于表面阈值的点,则处于形体的表面或者内部

如果把这个问题简化到一个立方体内部,如果白色的点位于物体内部,它就被激活,这样我们就得到了一个三角面片

image-20230828102922879

References


Last update: September 12, 2023
Created: August 24, 2023