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Figure 1: Overview of MRPilot: In automatic anchoring mode, labels displaying object names will be overlaid on the recognized
objects (b). Once the user confirms the anchor, the object anchor is overlaid on the corresponding object (c). The users can also
use hand gestures to manually anchor objects that cannot be automatically recognized left in the hand panel (c). MRPilot can
automatically detect and track physical objects during the whole task progress (d). It provides users with responsive guidance
by monitoring their actions, detecting progress (e), and automatically advancing instructions (f).

ABSTRACT

People often need guidance to complete tasks with specific require-
ments or sophisticated steps, such as preparing a meal or assem-
bling furniture. Traditional guidance often relies on unstructured
paper instructions that require people to switch between reading in-
structions and performing actions, resulting in an unsmooth user
experience. Recent Mixed Reality (MR) systems alleviate this
problem by giving spatialized navigation but demand an authoring
step and, therefore, cannot be easily adapted to general tasks. We
propose MRPilot, an MR system empowered by Large Language
Models (LLMs) and Computer Vision techniques, offering respon-
sive navigation for general tasks without pre-authoring. MRPilot
consists of three modules: a Navigation Builder Module using
LLM:s to generate structured instructions, an Object Anchor Mod-
ule exploiting Computer Vision techniques to anchor physical ob-
jects with virtual proxies, and an Action Recommendation Mod-
ule giving responsive navigation according to users’ interactions
with physical objects. MRPilot bridges the gap between virtual
instructions and physical interactions for general tasks, providing
contextual and responsive navigation. We conducted a user study
to compare MRPilot with a baseline MR system that also exploited
LLMs. The results confirmed the effectiveness of MRPilot.

Index Terms: Mix Reality, Task Guidance System, Context-aware
Interaction, Large Language Models.
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1 INTRODUCTION

Activities such as cooking, assembling furniture, and personal care
often require interacting with various objects that involve complex
steps due to their functional diversity and intricate design. In real-
world environments, people frequently encounter challenges due to
the complexity of these tasks, making clear and structured instruc-
tions crucial for their successful completion. For example, assem-
bling furniture may involve numerous components that need to be
aligned and connected in a precise order, where any misstep could
compromise the stability of the entire structure. Therefore, step-by-
step navigation is crucial, offering users the support they require to
confidently and efficiently navigate complex tasks in daily life.

However, following such instructions can be challenging, as
users often need to switch constantly between reading instructions
and performing actions. For instance, when cooking spaghetti,
users must juggle multiple tasks, such as chopping onions, boiling
pasta, and adding ingredients according to the recipe. This process
demands constant attention-alternating between reading the recipe
and carrying out actions such as measuring spices or stirring the
sauce. This frequent back-and-forth increases cognitive load [13],
especially when users need to follow the task sequence accurately
and measure ingredients precisely. As a result, users often have
to recheck their recipes frequently, slowing down the process and
increasing the likelihood of mistakes, such as overcooking.

To address this challenge, recent advances in Mixed Reality
(MR) technology offer solutions by providing pre-authored immer-
sive navigation within MR experiences in specific domains such as
cooking [32], dancing [42], assembling furniture [37, 38], and oper-
ating machines [23]. However, current MR solutions typically rely
on fixed, pre-defined guidelines [5, 36, 49, 14], making it challeng-
ing to adapt to dynamic and customized tasks, thereby limiting their
flexibility and generalizability in practical scenarios. An effective



navigation system should accommodate users’ customized needs,
supporting a variety of general tasks without pre-authoring.

Another area for improvement with existing MR task instruction
systems is the need for more responsive navigation for users’ ac-
tions. Current systems [5, 32] offer virtual step-by-step instructions
within a convenient range but require manual switching between
each step, which can interrupt the user’s workflow. Responsive
navigation, by contrast, automatically adjusts to user actions and
provides real-time feedback, reducing the need for manual input to
progress through instructions. Drawing inspiration from advance-
ments in Virtual Reality (VR), which involve tracking user interac-
tions with virtual objects [51], we aim to incorporate similar user-
tracking mechanisms into MR systems to enable responsive navi-
gation. By doing so, we can reduce the need for manual switching
and enhance the system’s adaptability to user actions.

This paper introduces MRPilot, an intelligent MR system de-
signed to provide responsive navigation to assist users in accom-
plishing general procedural tasks without pre-authoring. That is,
the system requires no manual per-task setup, such as authoring
predefined navigation or tailoring it to the environment in advance.
Our solution is motivated by the need for flexible, real-world navi-
gation that dynamically adapts to users’ environments, actions, and
needs. Unlike previous systems that are confined to task-specific
use cases, MRPilot leverages advanced Large Language Models
(LLMs) and Computer Vision techniques to understand users’ re-
quirements and physical environments. Our system generates or-
ganized, step-by-step procedures and anchors task-related physical
objects in the user’s real-world environment. Additionally, during
the task consumption process, our system adaptively recommends
possible next steps to users as they progress through each step.
This significantly reduces the cognitive burden on users and en-
hances the accuracy with which tasks are completed. We develop a
prototype system on a Head-Mounted Display (HMD) MR device
(Meta Quest 3). In this prototype system, we leverage the power
of LLMs in our Navigation Builder Module to build a structured
step-by-step guide. Our designed Object Anchor Module utilizes
the built-in depth sensors of the HMD and an open vocabulary ob-
ject detection technique, YOLO-world [6], to automatically anchor
task-related interactive objects, thereby enhancing the connection
between instructional content and the physical environment. More-
over, we develop a Step Recommendation Module that alleviates
the need for manual step switching, significantly reducing the user’s
cognitive load and improving the overall user experience.

We conducted a comprehensive user study involving 21 univer-
sity students to assess the usability and performance of the proposed
MRPilot system in comparison to a baseline system that also inte-
grates LLMs. The study allowed participants to interact with both
systems through designated and user-customized tasks detailed in
Table 1. Extensive evaluations between MRPilot and the baseline
demonstrated the superior performance of MRPilot in task comple-
tion and adaptive guidance.

In this paper, we made the following contributions:

* A flexible system without pre-authoring supporting general pro-
cedural tasks, leveraging LLMs and computer vision techniques
to generate organized step-by-step navigation.

* A responsive navigation mechanism that adapts to users’ actions
and their environments, enhancing workflow performance during
task progression.

* An MR user interface for visualizing structured instructions and
current step-related visual cues.

¢ A user study evaluating the performance of our system compared
to a baseline MR system.

2 RELATED WORK
2.1 Navigation Systems for Procedure Tasks

In recent years, significant research [43, 14, 7, 25, 29, 31, 47, 21,
54, 49, 36] has been conducted on guide and navigation systems
designed to assist users in completing procedural tasks across var-
ious contexts in the HCI community. A common approach in this
domain involves utilizing specialized devices or sensors, such as
specially designed utility or wearable technology, to monitor user
actions and environmental factors. Panavi [43] introduced a sensor-
equipped frying pan that delivered real-time, context-aware data
such as temperature. Similarly, MimiCook [32] integrated a depth
camera, a projector, and a scaling device to provide step-by-step
navigation on a kitchen counter, adapting instructions to a user’s
progress during cooking. PrISM-Observer [2] employed wrist-
worn devices to track hand movements and auditory cues, prevent-
ing user errors during daily activities. This system predicted when
the user might forget or incorrectly perform a step, intervening with
reminders before errors occur or notifications if a step was missed.
These sensor-driving guidance systems ensure accurate and real-
time feedback but are often limited by the requirement for addi-
tional hardware, which can be task-specific and may not generalize
well across different scenarios. XaiR [35] leverages action logging
and video summarization techniques to record expert demonstra-
tions, processing these multimodal data through multimodal large
language models (MLLMs) to enhance guidance accuracy. While
this method eliminates specialized hardware requirements by utiliz-
ing common video recording devices, its reliance on pre-configured
expert workflows introduces certain operational constraints. For
instance, XaiR assumes environmental objects (e.g., cooking in-
gredients) should closely correspond to those documented in pre-
recorded guidance sequences, which may potentially limit adapt-
ability when users operate in varied environmental conditions.

Another line of research focuses on tracking task progress for
better navigation. For instance, live video streams combined with
neural networks have been used to support procedural tasks such
as industrial [38] and origami [36] assembly. Similarly, pro-
cedural guides have been automatically extracted from teaching
videos [49], providing step-by-step instructions. However, these
approaches still rely on a manual authoring process, which can
limit their scalability and adaptability. Systems like AMMA [51]
and TutoriVR [41] offered immersive environments where users
could practice and complete cooking and sketching with adaptive
guidance. These systems effectively provided real-time feedback
and error management, allowing users to correct mistakes in a con-
trolled virtual setting. However, their applications were often con-
strained by the challenge of translating virtual instructions into real-
world scenarios, where environmental variability could affect the
systems’ effectiveness. While some works [4, 55, 24, 11] attempted
to address this issue, they often required additional sensors and are
confined to specific domains.

Additionally, advancements in LLMs [8, 3] and Computer Vi-
sion techniques have contributed to the development of navigation
systems that enhance task assistance [40, 5, 9, 48, 18, 44]. Paper-
ToPlace [5] transformed traditional paper-based instructions into
step-by-step virtual labels contextually linked to physical objects
using BERT [8]. Flaivor [9] used vision LLMs to generate cook-
ing recipes from a photo of food. By integrating LLMs and Com-
puter Vision techniques, these systems aimed to seamlessly bridge
the gap between the digital and physical realms. However, these
systems lack support for responsive guidance. Users often need
to manually click virtual buttons to navigate between steps, which
disrupts their workflow and increases cognitive load. In contrast,
our system, MRPilot, addresses this issue by using virtual object
anchors to track users’ interactions with real-world objects, auto-
matically recommending and transitioning to the next step. This
approach enables seamless task switching and minimizes interrup-



tions.

2.2 Interaction with Real World Objects in AR/MR Envi-
ronments

In the field of AR/MR, interaction with real-world objects is a crit-
ical component for creating immersive and intuitive experiences.
Several systems have been developed to explore object anchor-
ing [10, 50, 1, 28], augmentation [20, 19], and interaction tech-
niques [52, 53, 26, 12, 17, 16] within AR/MR environments, each
aiming to enhance user engagement and improve task performance.

Prior works have explored innovative approaches to object an-
choring and physical interaction in AR environments. ProOb-
JAR [53] enabled designers to prototype spatial interactions with
smart objects using AR-HMDs and AR markers for tracking. In-
foLED [50] used high-frequency flickering in LED indicator lights
for device positioning and communication, while LightAnchors [1]
similarly leveraged point lights to anchor digital information with-
out modifying the physical environment. These frameworks relied
on predefined or static markers, limiting their adaptability in dy-
namic scenarios. Meanwhile, systems like Teachable Reality [26],
UbiEdge [12], and Ubi-TOUCH [17] focused on enhancing physi-
cal interaction through object pre-registration and haptic feedback.
These systems enabled tangible interactions with virtual content by
leveraging everyday objects, although they faced scalability chal-
lenges across different environments.

Object detection methods [45, 6] play a crucial role in identify-
ing and interacting with physical objects within AR/MR environ-
ments. XR-Objects [10] proposed a novel paradigm for integrating
physical objects as interactive entities in Extended Reality (XR). By
combining object segmentation and classification with Multimodal
Large Language Models (MLLMs), XR-Objects allowed users to
interact with physical objects as if they were digital, offering a
seamless blend of the physical and digital worlds. This system
opened new possibilities for creating contextually relevant interac-
tions but primarily focused on augmenting individual objects with
MLLMs, without establishing strong inter-object relationships.

In summary, while these systems offered various techniques for
enhancing interaction with real-world objects in AR/MR environ-
ments, they often faced challenges related to integration with dy-
namic procedure navigation. Our work, MRPilot, introduces an
object anchoring method that automatically detects and links real-
world objects to procedural steps. Our system aims to reduce the
cognitive load on users by eliminating the need for manual step-
switching and enhancing the overall interaction experience within
immersive MR environments.

3 DESIGN RATIONALE
3.1 User Scenario

Consider the following scenarios: 1) Emily has a minor cut on her
arm and begins cleaning and dressing the wound, but skips steril-
izing her hands, risking infection. 2) Tom, a novice cook, attempts
a complex sandwich recipe. He is overwhelmed by the numerous
ingredients and steps, constantly referring to the recipe and fol-
lowing it rigidly, which causes delays and stress. His fear of mis-
takes discourages him from improving his cooking skills. 3) Alex,
another novice cook, attempts to make spaghetti but lacks the key
ingredients. He struggles with substitutions and making technique
adjustments, which leads to frustration and delays.

In each case, a context-aware assistant providing timely guid-
ance could help users avoid mistakes and reduce frustration. Our
MR-HMD system is designed with these principles: 1) Emily re-
ceives clear, step-by-step instructions to prevent skipping important
steps. 2) Tom benefits from adaptive navigation that streamlines
tasks and reduces overwhelm. 3) Alex is supported in ingredient
substitutions and recipe adaptations for efficient meal preparation.

3.2 Design Consideration

Adaptive Task Flow vs. Static Instruction Sequences. Prior task
guidance systems [5, 11, 32, 23] often present static, pre-defined
instruction sequences that do not account for the user’s progress or
environment. With such systems, users are required to manually
navigate between steps or stages, which has been shown to cause
inefficiencies during workflow deviations [13]. For example, users
often pause to correct mistakes or adjust environmental variations,
which increases cognitive burden [39].

In contrast, MRPilot adopts an adaptive task flow approach that
dynamically responds to the user’s actions and environment. By
leveraging real-time sensor data and object detection, the system
automatically updates and presents the next appropriate step based
on the user’s progress. This design aims to reduce manual inter-
vention and streamline processes, potentially alleviating cognitive
demands associated with task switching. Additionally, MRPilot ex-
plores idle time management by detecting periods of user inactivity.
When no actions are detected for a predefined duration, the system
can suspend the current task and suggest alternative interim tasks.
This feature seeks to minimize unproductive waiting periods while
maintaining workflow continuity.

World-Anchored Navigation vs. Headset-Centered Display.
In MR environments, the choice between world-anchored naviga-
tion (placing digital content within the physical space) and headset-
centered displays (attaching UI elements to the user’s field of view)
may affect immersion and task execution [39]. Headset-centered
displays, though accessible, can detract from the sense of presence
by imposing a digital interface on top of the real-world view, thus
breaking the spatial coherence between the task and its navigation.

To maintain spatial consistency and minimize cognitive disrup-
tion, MRPilot employs world-anchored navigation, where instruc-
tions and digital cues are overlaid onto the physical objects relevant
to the task. This allows users to naturally interact with their envi-
ronment while receiving real-time navigation in context, fostering a
deeper connection between digital and physical elements. By align-
ing the interface with the physical task space, the system seeks to
leverage users’ spatial awareness for navigating both the task and
instructional content, which could potentially address orientation
challenges and support task execution.

4 MRPilot SYSTEM

We develop MRPilot, an MR system that provides users with guid-
ance to assist them in accomplishing procedural tasks. Based on the
previous discussion, we identified the following features in our sys-
tem: 1) enabling users to receive procedure instructions for general
tasks generated by MRPilot according to their needs, 2) scanning
the environment to provide context-aware navigation and anchor
spatial tags over physical objects, and 3) providing a responsive
task consumption interface that delivers real-time guidance for task
completion. In this section, we discuss the design of MRPilot and
present our user interface.

4.1 Problem Formulation

Our work primarily focuses on guiding users through their cus-
tomized requirements for general procedural tasks. These tasks in-
volve a complex sequence of human-object interactions, which can
be transformed into a structured, step-by-step process.

We define a structured task as comprising several major sub-
tasks, each of which consists of multiple actions. Each action is
classified into one of four possible statuses: 1) Not started: the
user has not yet begun this action, 2) In progress: the user is ac-
tively working on this action, 3) Suspended: the action has been
temporarily paused while the user focuses on another action, and 4)
Completed: the user has finished this action.
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Figure 2: Task preparation of MRPilot. A user starts by providing textual instructions via speech or text, followed by an image capture of the
environment. These inputs are processed by the Navigation Builder Module, which identifies task-relevant objects and generates an action

transition graph.

4.2 System Overview

The MRPilot system operates through the following steps:

1) Providing textual requirements: The user provides a task
description along with an image of the environment to our Naviga-
tion Builder Module powered by ChatGPT. The navigation builder
then returns a set of step-by-step structured instructions for per-
forming the task. The user can either accept, discard, or modify
these instructions (see Figure 2).

2) Scanning environment and anchoring physical objects:
After the user accepts the instructions, they move through the phys-
ical environment to scan relevant objects and their locations, an-
choring spatial tags that include the object names within the scene.
A user-friendly manual labeling method is also provided to allow
users to anchor objects that cannot be automatically detected by
Object Anchor Module (see Figure 1 (b, ¢)).

3) Adaptive task completion: MRPilot utilizes spatial anchors
and step-by-step instructions to offer responsive navigation, assist-
ing the user throughout the task completion process (see Figure 3).

4.3 Navigation Builder Module

The Navigation Builder Module is designed to translate users’
customized task requirements into a structured set of step-by-step
instructions based on the user’s intended task and scene informa-
tion. This process is accomplished by a set of specialized LLM
Agents utilizing the ChatGPT API, each responsible for distinct
stages of task analysis and instruction generation. The system lever-
ages the following three LLM agents to fulfill this function.

4.3.1

The Scene Analysis Agent is responsible for analyzing images cap-
tured by the user’s HMD device in conjunction with the task in-
structions provided by the user. This agent identifies and filters rel-
evant objects within the user’s environment that are necessary for
completing the task at hand. By combining visual data with user-
provided directives, the agent ensures that only task-relevant items
from the physical environment are highlighted for further guidance.

Scene Analysis Agent

4.3.2

Once the Scene Analysis Agent has identified and filtered the
necessary objects from the environment, the Instruction Drafting
Agent takes over. This agent generates an unstructured task instruc-
tion document in plain text based on the user’s task requirements
and the contextual information from the scene analysis. The un-
structured navigation draft provides a natural language description
of the task steps and objects involved, laying the foundation for the
next phase of instruction processing.

Instruction Drafting Agent

4.3.3 Task Structuring Agent

The final step in the process is handled by the Task Structur-
ing Agent, which converts the unstructured task description into a
structured set of step-by-step instructions. This agent carefully an-
alyzes and breaks down the unstructured document provided by the
Instruction Drafting Agent, identifying individual steps and the
corresponding objects involved at each stage of the task. The re-
sult is a detailed, structured set of instructions that guides the user
through task completion in an organized manner, following our pre-
defined task structure in Section 4.1. This ensures that all steps are
clearly defined and logically sequenced.

Together, these three agents form the backbone of the Navigation
Builder Module, providing the capability to dynamically interpret
user needs and translate them into actionable, structured task in-
structions tailored to the specific environment and needs.

4.4 Object Anchor Module

MRPilot uses the Meta Quest 3 MR-HMD as its front-end platform.
To anchor physical objects in the environment that are relevant to
the task guidance generated by the Navigation Builder Module,
we capture the RGB pass-through image stream from the Quest
3. When the user enters automatic object anchoring mode, MR-
Pilot streams these images from the HMD’s field of view (FOV)
to a dedicated server. The RGB image stream is processed using
an open-vocabulary object detection algorithm [6] to extract the se-
mantic meaning and screen-space locations of the relevant objects
identified by the Navigation Builder Module. We then utilize the
Quest 3’s built-in depth sensor to perform ray casting, converting
the screen-space coordinates into world-space locations to overlay
virtual objects onto the corresponding real-world task-relevant ob-
jects, as shown in Figure 1 (b), (c), and (d). These object anchors
are then used to highlight the physical objects during the task flow.

However, due to the limitations of [45, 6], it is not always pos-
sible to detect the semantic information of all task-relevant objects.
To address this, we provide a convenient and user-friendly manual
anchoring interface, allowing users to manually anchor objects that
cannot be automatically detected (Figure 1 (c)).

4.5 Action Recommendation Module

Once all task-related objects are properly anchored, the Action
Recommendation Module suggests the next steps in the user’s task
completion process based on the current task status. We use a task
recommendation agent powered by LLMs, followed by a task filter-
ing algorithm. The recommendation agent is activated when an ac-
tion transitions to the “In progress” status mentioned in section 4.1.
The status of the user’s task is sent to the recommendation agent,
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Figure 3: A toy example to show how the Action Recommendation Module works. The user can adaptively select the recommended
actions, and the Action Recommendation Module will suggest the following steps according to the user’s selection. Two choices result in
two different sequences of actions, and both sequences lead to the accomplishment of the task.

where it is processed using the Chain of Thought (CoT) [46] reason-
ing principle. From the original response text, we extract parsable
recommended steps and then apply our task filtering algorithm, as
illustrated in Algorithm 1, to filter out recommended steps with ob-
vious errors. This filtering mechanism aims to reduce redundant
suggestions and mitigate hallucinations in the actions generated by
the LLM. By removing inconsistent steps such as completed and
ongoing actions, Algorithm 1 helps improve the quality and rele-
vance of the recommended task sequence. Figure 3 illustrates how
the Action Recommendation Module suggests the next steps with
a toy task. In this example, the users want to make a meal that re-
quires several actions, including boiling water, cutting cucumbers,
cutting tomatoes, and preparing sauce. The users can adaptively se-
lect the recommended actions, and the Action Recommendation
Module will suggest steps according to the user’s selection. For
example, when the users enter the action of “boil water”, they can
either wait until the hot water is ready or suspend the “boil water”
action and continue with other actions. Two choices result in two
different sequences of actions, and both sequences lead to the ac-
complishment of the task.

4.6 MR User Interface

We present an MR user interface that integrates all the functions
discussed above, along with additional features such as step visual-
ization and natural interaction. The process of using MRPilot con-
sists of three main steps: 1) the task preparation mode, where user
requirements and contextual environments are gathered; 2) the ob-
ject anchoring mode, where virtual tags are anchored to physical
objects; and 3) the task consumption mode, where users follow the
generated instructions to finish the task. The interface panel is dis-
played in front of the user’s view, allowing easy access to all the
information and functions provided by MRPilot, as well as facili-
tating seamless switching between them.

As shown in Figure 4 (a), the user enters task preparation mode
by providing a requirement description using a voice command by
clicking the Tell Us With Voice button. The user then speaks to the
system to specify his/her goal. After confirming the request, the
user enters the scene capture panel to take an image of the physi-
cal environment (Figure 4 (b)). This allows the system to identify
relevant objects using gesture recognition and then send this infor-
mation to the corresponding agents. Once the task navigation drafts
are returned, the user can review the generated context and either
accept the navigation or discard it to request a new one by clicking

Algorithm 1 Action Recommendation Filtering Algorithm

1: Imput: List of original recommend actions T, Current action C, Recommendation
action count limit L

2: Output: List of recommended actions R

3: Initialize an empty list R and a counter rCount < 0

4: if a suspended action exists and C is not suspended then

5: Add the suspended action to R

6 Increment rCount

7: end if

8: for each action in T do

9 Extract the status of the action

10: if the action is neither Completed, InProgress, nor Suspended then
11: Add the action to R

12: Increment rCount

13: end if

14: if rCount > L then

15: break

16: end if

17: end for

18: if R is empty then

19: Add the first NotStarted action from the list of all tasks to R
20: end if

21: return R

the corresponding button (Figure 4 (c)).

Upon accepting the generated instructions, the user can begin
marking physical objects by clicking the Start Tracking button,
which activates object anchoring mode (Figure 4 (d)). The user
can then confirm the anchor in world space using hand gestures. A
3D virtual glow is overlaid on each corresponding physical object,
and the user can adjust its position, rotation, and scale through the
built-in freehand interactions. Additionally, we provide a manual
anchoring interface that allows the user to summon object anchors
by simply pinching the highlighted real-world objects on the hand
panel in case automatic anchoring fails to capture all objects.

After completing object anchoring mode, the user enters task
consumption mode. The user can easily monitor the overall task
completion status via the task overview panel (Figure 5 (a)). Be-
sides, the user can seamlessly switch between actions recom-
mended by the Action Recommendation Module by interacting
with action-related objects or directly clicking the recommended
step text. During task consumption mode, the visual effects of ob-
ject anchors dynamically adjust based on the current action step,
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Figure 4: Preparation user interface. (a) The user provides task in-
structions via voice or text to initiate task preparation mode. Note
that this panel is also used in Baseline system. (b) The user captures
the scene for object recognition using the “Capture Your Scene”
button. (c) This panel displays the generated instruction draft,
where the user can either accept or discard it. (d) The user en-
ters Object Anchoring mode by clicking “Start Tracking”, allow-
ing MRPilot to anchor virtual visual cues above physical objects in
the environment. After all objects are anchored, the user can click
the “Start MRPilot” button to begin task navigation.
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Figure 5: Task consumption mode user interface. (a) Guidance
overview panel. (b) The task navigation panel shows the current
step and recommended steps. (c) Upon selecting a recommended
step, other recommended steps will be discarded. (d) Feedback
from the LLM displays in Baseline, where users can also regen-
erate the result using the interface in Figure 4 (a).

changing the glow color accordingly. Anchors related to completed
steps that are no longer needed for future actions will be automat-
ically removed. Additionally, we implement an anchor navigation
feature: when an object anchor related to the current task is outside
the user’s field of view, a screen-space indicator provides spatial
cues to navigate the user toward the anchor’s location.

We have also implemented an action suspension feature, allow-
ing the user to suspend a long-running action (e.g., boiling water)
by pressing the Suspend Current Action button (Figure 5 (b, ¢)) and
switch to other actions for efficiency. When the user suspends an
action, the recommendation module adjusts and recommends steps
that do not depend on the suspended action. This enables the user
to seamlessly continue progressing on other independent actions,
maintaining workflow continuity and overall efficiency.

5 IMPLEMENTATION DETAILS OF MRPilot

We implemented MRPilot using the Meta Quest 3, which offers
built-in SLAM tracking and a depth sensor to support MR expe-
riences. The MRPilot interface was developed on a local PC (In-
tel Core i19-14900K CPU, 128GB RAM) using Unity 2022.3.45f1.
During the scene environment and object anchoring modes, we

Table 1: Task descriptions using MRPilot or Baseline.

Task No. Description

T1 The user is asked to brew a cup of tea to get familiar
with the MR headset and the systems.

T2 The user is guided by MRPilot or Baseline to make
a sandwich with randomized, precisely quantified
ingredients under a variety of sandwich ingredients.
A prototypical task involves making a sandwich
containing exactly two ham slices, three cucumber
slices, and four tomato slices; the sandwich must
be fully heated.

T3 The user is guided by MRPilot or Baseline to
change the dressing of a wound wrapped with
gauze.

T4 The user is guided by MRPilot or Baseline to as-
semble a toy desk using interlocking wooden com-
ponents.

TS The user is guided by MRPilot or Baseline to per-
form a small chemistry experiment producing oxy-
gen gas from hydrogen peroxide.

used a resolution of 1024 x 1024 for the RGB image stream. The
scene environment image was then processed by our Scene Analy-
sis Agent (as described in section 4), which utilizes a multi-modal
LLM, specifically gpt-40-mini for the recommendation module and
gpt-4o for other modules. This model was also employed in the
development of other agents within the system.

We further evaluate the latency of our four agents by issuing 50
API requests per agent. On average, a single user request requires
approximately 19 seconds to generate a complete response. All
agents in our system incorporate a retry mechanism against request
failures. Further details are provided in the supplemental materials.

For the object anchoring mode, images were processed locally
using a PC equipped with a single NVIDIA RTX 4090 GPU. We
leveraged the Meta All-in-One SDK [22] to enable seamless inter-
action between hand gestures, virtual objects, and the user interface.
For object detection, we used a detection model [6] pre-trained on
a variety of datasets [33, 15, 30, 34]. Object anchors were created
in world space by converting screen-space 2D detection bounding
boxes into 3D world-space positions, utilizing the depth texture pro-
vided by the Quest 3’s depth sensor.

6 USER STUuDY

We conducted a user study to qualitatively evaluate the usability
of our system. The evaluation involved all steps in our system, as
well as a comparative study between MRPilot and a baseline sys-
tem (Baseline) that also employed LLMs. During the evaluation,
participants were asked to use MRPilot and Baseline for four tasks
(T2-TS) that could be easily conducted in a typical office. Each
study contained one session where each participant needed to com-
plete two tasks. We used T1 as the training task, through which
participants could get familiar with MRPilot and Baseline. T2-T5
were used for formal evaluations, each of which could be completed
in around 10 minutes. Table 1 provides details of task requirements.

6.1 System Configuration

The study was conducted in an indoor environment. We developed
a baseline MR system (Baseline), where users could interact with
ChatGPT via voice commands and view instructions displayed on
a virtual panel inside MR (see Figure 5 (d)). Rather than asking
participants to use a tablet-based ChatGPT application, placing the
ChatGPT application within the MR environment and rendering in-
structions on a virtual panel in front of the user helped to minimize
the impact of confounding factors caused by discomfort from the



Table 2: Session descriptions using MRPilot or Baseline.

Session No. MRPilot Baseline
1 T2 T3
2 T3 T2
3 T4 T5
4 TS5 T4

Automatic or Manual Switch Distribution of MRPilot

®
o
®
X =
)

11%

X
X N
o N ~
N

38%
50%
50%
56%
44%
30%
30%

62%
50%
50%
44%
56%

70%

71%
100%
100%

70%
100%

80%
89%
78%
100%
100%
100%
100%
100%
89%

100%

PL P2 P3 P4 P6 P7 P8 P9 P10 P11l P12 P13 P14 P15 P16 P17 P18 P19 P20 P21
(T2) (T3) (T2) (T3) (T2| (T3) (T2) (T3) (T2) (T3) (T2) (T3) (T4) (T5) (T4) (T5) (T4) (T5) (T4) (T5) (T5)

Switch Type: Automatic Manual

Figure 6: The distribution of automatic and manual switch propor-
tions across individual participants. Percentages within each bar
segment represent the relative frequency of each switch type re-
ported by participants. Tasks completed by each participant using
MRPilot are shown in parentheses. Detailed task assignments are
provided in the supplemental material.

headset. We designed four experimental sessions, each comprising
two task combinations, with counterbalancing applied to minimize
prior learning effects and task familiarity. Before the session be-
gan, T1 was used to help participants learn and get familiar with
both MRPilot and Baseline. During the session, participants were
instructed to complete 1 session shown in Table 2. Note that we
used T2 to test the generalizability of MRPilot, as it allowed users
to customize their own sandwiches freely. This setting also enabled
us to evaluate how well MRPilot could perform when assembling
sandwiches with randomly selected ingredients, simulating more
diverse and unpredictable user preferences.

6.2 Participants and Procedure

We invited 21 university students (aged between 22 and 25) as par-
ticipants. 13 participants had no prior experience with HMD but
were familiar with AR applications on tablets or mobile phones. 8
participants have used head-mounted VR/AR devices before. None
of them had previously used our system or had any prior knowledge
about it. The entire study lasted about one hour, and each partici-
pant was compensated with two delicious sandwiches.

Upon arrival, the participants were given a brief introduction to
the study and asked to sign a consent form if they felt comfortable
proceeding. We then explained the basic interaction methods with
the Meta Quest device, such as how to click buttons on virtual pan-
els using ray interaction or hand-poke interaction, and how to use
hand gestures in Quest, since most participants had no experience
in using HMD. The participants were introduced to the entire work-
flows of MRPilot and Baseline, along with the functions of the Ul
and hand panel, through a warm-up task T1 (making a cup of tea).
Among the participants, 1 had prior experience using Meta Quest,
though none had development experience with it. The participants
were given sufficient time to familiarize themselves with MRPilot
and Baseline before starting the official study.

To mitigate the potential confounding effects of user fatigue
and learning bias towards MRPilot in later tasks, we strategically
grouped the tasks into counterbalanced blocks during participant

assignment. This grouping approach ensured approximately equiv-
alent total execution durations across all experimental conditions,
as shown in Table 2 and Figure 8. The grouping detail can be found
in the supplemental material. After each task, participants were
asked to fill out a System Usability Scale (SUS) questionnaire on a
5-point scale (1 indicates strongly disagree and 5 indicates strongly
agree), as well as a NASA-TLX [27] questionnaire on a 5-point
scale (the lower, the better) for both MRPilot and Baseline. In ad-
dition, a 15-minute interview was conducted with each participant.

6.3 Result and Analysis

We assessed user workload and system usability using adapted
versions of the NASA-TLX and SUS, and applied the Wilcoxon
Signed-Rank test for analysis. We also provide further NASA-TLX
and SUS data analysis in the supplemental material.

Compared to Baseline, MRPilot received a more favorable feed-
back on overall SUS score (MRPilot: M = 75.48,SD = 11.03,
Baseline: M =49.64,SD =21.73; Z = —3.28,p < .01,d = 1.015),
especially in usability and intuitiveness, as illustrated in Figure 7.
Most participants found MRPilot easy to use (Q3) (MRPilot: M =
3.86,8D = 0.73; Baseline: M =2.67,SD =1.11; Z= -3.07,p <
.01), with instructions and general task procedures that were clear
and supportive (Q2) (MRPilot: M = 3.91,SD = 0.70; Baseline:
M =3.14,SD = 1.20; Z = —2.59, p < .01). The system was also
seen as highly intuitive (Q8), requiring minimal effort to operate.
Users specifically noted that the visual highlighting of object an-
chors helped them concentrate on the current task and associated
items, thereby enhancing the system’s intuitiveness (P3, P7, P17).
The system’s consistency (Q6) facilitated rapid learning (Q7), re-
ducing the training time and increasing user satisfaction.

In contrast, the participants rated the baseline system mostly neu-
tral or negative in terms of simplicity (Q2) and ease of use (Q3).
This was largely because Baseline struggled to generate satisfactory
results when users provided overly simple instructions (P2, P6, P7,
P11, P14, P20). Feedback regarding intuitiveness (Q8) was mixed,
with some participants expressing dissatisfaction due to the unsta-
ble outcomes of the text-based navigation. As for functional inte-
gration (Q5) and consistency (Q6), several participants criticized
Baseline for its lack of well-integrated features, which caused them
to feel lost in lengthy text instructions (P2-5, P7, P11, P17, P21).

A concern shared by both MRPilot and Baseline was related to
user confidence (Q9). While MRPilot inspired more confidence,
there were still neutral or negative responses. Over half of the par-
ticipants (P1-P3, P5-P7, P13-P15) indicated that the low resolution
of the Quest 3 pass-through made them more cautious during pre-
cise operations, such as tearing off tape or cutting ingredients. This
also contributed to a reduced willingness to use the MR instruction
system (Q1), as users felt less confident in its effectiveness.

Compared to Baseline, MRPilot outperformed in multiple di-
mensions of the NASA-TLX scores (Figure 7 (a)). The data sug-
gests a lower perceived workload when using MRPilot for task navi-
gation. Specifically, MRPilot excelled in lowering users’ frustration
levels (MRPilot: M = 1.52,8D = 0.60; Baseline: M = 2.48,SD =
1.21; Z = —-2.81,p < .01), effort (MRPilot: M =1.95,SD = 0.81;
Baseline: M =3.05,SD = 1.16; Z = —2.91,p < .01), time pres-
sure (MRPilot: M = 1.48,SD = 0.75; Baseline: M = 2.67,5D =
1.11; Z = -2.97, p < .01), and physical demands (MRPilot: M =
1.67,8D = 0.91; Baseline: M =2.52,SD = 1.21; Z=—-2.90,p <
.01). when compared to Baseline. The participants generally found
MRPilot more intuitive, requiring less mental effort. Moreover,
MRPilot achieved higher performance scores, with the participants
reporting that tasks were completed more smoothly and efficiently
because of the structured navigation (P1-P3, P5-P9, P16, P18, P20).

To demonstrate the effectiveness of the Step Recommendation
Module, we analyzed the proportion of automatic switching based
on object anchors and manual switching using the virtual panel dur-
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Figure 8: Four example task scenarios of MRPilot. These diverse
scenarios span domains such as food preparation, healthcare, sci-
ence education, and manual assembly. During each task, users
receive real-time, responsive navigation through MRPilot to assist
them in completing the procedures accurately and efficiently.

ing users’ interactions with MRPilot. As shown in Figure 6, the re-
sults indicate that for almost all participants, the proportion of using
automatic switching based on object anchors exceeded 50%. Ad-
ditionally, we observed that in tasks generated by the Navigation
Builder Module, which occasionally included confirmation steps
in specific tasks (e.g., confirming whether all ingredients were pre-
pared in the sandwich preparation task or checking that hands had
been sanitized in the healthcare task). In this case, users tended to
manually switch the action to save time. Besides, since the sand-
wich preparation task involves a relatively high degree of freedom,
users also tended to freely explore feasible steps rather than strictly
follow the system-provided sequence. Notably, participants P13-
P21 exhibited relatively lower manual switching rates, as their as-
signed tasks (chemistry experiment and toy desk assembly) con-
tained fewer confirmation steps and required adherence to a fixed
sequence compared to other groups. This observation indicates that
while automatic switching is predominant, manual switching re-
mains a necessary feature for specific use cases.

To analyze the qualitative feedback gathered from the study and
interviews, we conducted a thematic analysis. First, two authors
independently read and coded the transcribed data line by line to
identify meaningful segments. These initial codes were discussed
collaboratively to develop a shared codebook. The coded data were
then systematically organized into candidate themes by grouping
related codes. To enhance the credibility of the analysis, the themes
were repeatedly reviewed against the raw data, and discrepancies
were resolved through meetings among the authors. This process
ensured that the final themes accurately captured the main pat-
terns in the participants’ narratives. As a result, four main themes
emerged, which are detailed below.

Theme 1: Overall User Experience (all participants). The
participants felt that MRPilot was overall easy to learn and/or use,
friendly to HMD beginners, and provided great responsive naviga-
tion during general task guidance. Several participants mentioned
that MRPilot made it significantly easier to locate objects related
to actions. For instance, P2 noted that he could “find objects im-
mediately among a number of ingredients.” P5 remarked, “Using
MRPilot is simple and intuitive,” while P7 described it as “a novel
experience to complete tasks in a mixed reality setting. The interac-
tion and audio feedback are clear, which enhances my confidence
during task completion.” At the same time, the participants also
suggested potential improvements, such as “offering more flexibil-
ity in completing actions, not limiting the interaction to clicking
panels or interacting with all objects relevant to the actions”, as
highlighted by P5 and P14.

Theme 2: Differences with Traditional Task Completion (P1,
P7, P8, P17). Several participants mentioned the differences be-
tween immersive experience and traditional task completion. P1
stated that “MRPilot helped me carefully complete the process of
changing wound dressings, with the structured, step-by-step guid-
ance preventing me from getting lost in lengthy plain text instruc-
tions.” In particular, P7 highlighted the advantage of MRPilot in
recommending recipes based on available ingredients, utensils, and
personal taste preferences: “MRPilot greatly reduced the time spent
browsing online and cross-referencing existing ingredients to de-
termine the feasibility of a recipe. Compared to the baseline sys-
tem, MRPilot allowed me to quickly receive accurate guidance
without needing repetitive modifications.” Additionally, P8 noted
that “MRPilot excelled in meeting highly customized requirements.
Even for me, with limited cooking experience, it enabled me to



efficiently complete a customized recipe without the hassle of re-
peatedly searching and comparing different options.” Furthermore,
P17 emphasized MRPilot’s capability in handling unfamiliar ob-
jects during tasks: “When I lacked knowledge about certain items,
MRPilot helped me effectively differentiate between potentially re-
lated objects, ensuring I selected appropriate items confidently.”
This aspect made MRPilot especially beneficial for users with spe-
cific preferences or less familiarity with task-related objects.

Theme 3: Learning Curve (P2, P4, P5, P18, P21). Some par-
ticipants (P2, P4, PS5, P18, P21) noted that their ability to use MR-
Pilot improved significantly as they became more familiar with it.
This was particularly true for actions such as making the required
hand gestures to capture the scene environment and manually an-
choring objects. Initially, most users, especially those without prior
experience with Quest 3, required instructions from the HMD to un-
derstand these interactions. However, after this initial phase, they
were able to explore MRPilot independently. Participants P2, P4,
P5, and P18 also mentioned that using MRPilot became very easy
once they had learned all of its features. This feedback suggests
that there is a slight learning curve, especially for participants with
limited knowledge of VR/MR devices.

Theme 4: Limitation and Challenges (P3-P5, P14). The par-
ticipants also mentioned certain limitations and challenges. These
include limited performance in action switching, low resolution of
the pass-through display, and the heavy weight of the HMD. Some
limitations were inherited from the Meta Quest 3. For instance,
as P3 said, “I cannot perform very fine operations using MR de-
vices because I cannot see the real world clearly.” Similarly, P5
noted, “I feel unconfident using a knife because the low resolu-
tion of the pass-through display makes me afraid of cutting my
fingers.” In particular, regarding the action switching limitation,
P4, who is very familiar with Al assistant system, mentioned, “/
feel that after the baseline guide is generated, I can operate more
freely rather than strictly following predefined steps, which feels
better, even though I may need to repeatedly modify my require-
ments to generate this guide.” P4 also noted that while the struc-
tured steps and distributed instructions reduced the burden of read-
ing large amounts of text, they also introduced some unnecessary
confirmation steps. For example, when using MRPilot, P4 said, “It
makes you confirm whether everything is ready, and I need to pro-
vide feedback to the system that I have indeed completed this step,
which adds an extra burden.” P14 also expressed that MRPilot’s
verification steps generated in the process is redundant: “The sys-
tem forces me to double-check each preparation step and formally
acknowledge completion through explicit notifications, creating ad-
ditional workflow interruptions.” In the future, we aim to improve
action switching by introducing additional criteria for determining
when an action is complete. This will involve leveraging machine
learning and computer vision techniques to better understand users’
actions through the pass-through camera of the HMD.

7 LIMITATIONS AND FUTURE WORK

Task Status Tracking and Object Position Tracking. Although
we employ task status tracking methods based on item usage re-
lationships and manual task state switching, this approach has its
limitations. For example, it is not always necessary to use all the
associated items to complete a given action. While users can man-
ually select the recommended action step to proceed directly to the
next one, this still introduces additional confirmation steps, which
may slow the workflow. A potential solution to this issue is the use
of visual understanding or modeling to estimate the execution time
for each action, thereby facilitating seamless task transitions.

We implement object anchoring by overlaying virtual labels on
physical items. This allows users to interact with the actual objects
while MRPilot utilizes Quest 3’s built-in interaction recognition.
This system monitors user actions and ensures that virtual labels

accurately follow the physical items. However, the effectiveness of
this tracking is susceptible to limitations such as occlusion, light-
ing conditions, and the specific way users grasp the objects, result-
ing in less-than-perfect tracking performance. Adopting an object
tracking approach based on predefined object models, such as that
employed by Apple Vision Pro, could potentially alleviate some of
these challenges and improve robustness.

Software and Hardware Constraints. One of the major soft-
ware constraints is the latency performance of structured task gen-
eration. As mentioned in section 5 and supplemental material, gen-
erating a complete task takes about 20 seconds. If the network con-
nection is poor and the request fails, it will take even longer for
the user to receive a response. In addition to hardware limitations,
most users in our study reported discomfort while wearing the Meta
Quest 3 due to its weight.

Challenges for Real-World Deployment. Several practical and
technological challenges remain for deploying MRPilot in real-
world environments. While our user studies confirm its feasibil-
ity in some procedure tasks, but the generalization to all scenarios
still need further investigation. In some cases, factors such as very
low lighting conditions and occlusions can introduce performance
constraints and limit the system’s generalizability. Another current
challenge in using LLMs for navigation generation is handling in-
accurate instructions caused by hallucinations or limited contextual
awareness. At present, Algorithm 1 employs a filtering mechanism
to discard clearly unreasonable instructions in most cases but can-
not guarantee complete correctness, which is an inherent limita-
tion of LLMs. Additionally, while MRPilot effectively highlights
task-relevant objects, it does not yet fully exploit MR interaction
affordances such as action trajectories and dynamic motion cues.
Enhancing the system with these richer spatial visualizations could
further improve the task performance of users.

8 CONCLUSION

In this paper, we introduced MRPilot, a novel MR system designed
to provide responsive navigation for general procedural tasks pre-
authoring. By leveraging LLMs and computer vision techniques,
MRPilot effectively generates structured, step-by-step instructions
tailored to users’ specific tasks and physical environments. The
system’s key innovation lies in its ability to offer real-time, adaptive
navigation that responds to users’ actions, significantly reducing
cognitive load and enhancing workflow efficiency.

Our user study demonstrated that MRPilot outperforms the base-
line MR system by providing more flexible and dynamic task sup-
port. Unlike previous systems that rely on fixed, pre-authored guid-
ance, MRPilot is capable of adapting to general tasks, offering con-
textual feedback and object anchoring that closely integrates vir-
tual instructions with the user’s physical environment. The combi-
nation of responsive navigation and general task support not only
improves the overall user experience but also empowers users to
navigate complex tasks more confidently and accurately. We show-
case various application examples, which include food preparation,
healthcare, science education, and manual assembly. Finally, we
discuss the limitations of the current version of MRPilot and outline
future research directions. We believe that our work represents a
significant advancement in the development of intelligent MR sys-
tems, demonstrating the potential of MR technologies to enhance
task performance in everyday scenarios.
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