
MRPilot: A Mixed-Reality System
for Responsive Navigation of General Procedural Tasks

Hongliang Yang
Shenzhen University

Jin Zhou
Shenzhen University

Pengfei Xu*

Shenzhen University
Hongbo Fu

HKUST
Hui Huang

Shenzhen University

SUPPLEMENTAL MATERIALS

This supplementary material provides detailed information support-
ing the main paper, including the full participant-task assignment
table used in the user study to evaluate Baseline and MRPilot. We
include real-world deployment results of the Object Anchor Mod-
ule as well as implementation details of the four LLM-based agents
in our system in Section 1 and 2. Additionally, we include statis-
tical analysis of user feedback in Section 3. Specifically, we in-
clude latency statistics from repeated API calls and the complete
prompt templates for the Instruction Drafting Agent, Scene Anal-
ysis Agent, Task Structuring Agent, and Action Recommenda-
tion Agent in Section 4.

1 OBJECT ANCHOR

The real-world deployment results of the Object Anchor Module
are illustrated in Figure 1.

2 USER STUDY SETTINGS

Table 1 shows the specific tasks and interface conditions that were
assigned while evaluating Baseline and MRPilot.

Table 1: The study was designed to evaluate MRPilot, with each
participant required to complete two experimental sessions across
the four phases, following the sequence outlined above.

Participant Task 1 Task 2
P1 MRPilot T2 Baseline T3
P2 MRPilot T3 Baseline T2
P3 Baseline T3 MRPilot T2
P4 Baseline T2 MRPilot T3
P5 MRPilot T2 Baseline T3
P6 MRPilot T3 Baseline T2
P7 Baseline T3 MRPilot T2
P8 Baseline T2 MRPilot T3
P9 MRPilot T2 Baseline T3
P10 MRPilot T3 Baseline T2
P11 Baseline T3 MRPilot T2
P12 Baseline T2 MRPilot T3
P13 MRPilot T4 Baseline T5
P14 MRPilot T5 Baseline T4
P15 Baseline T5 MRPilot T4
P16 Baseline T4 MRPilot T5
P17 MRPilot T4 Baseline T5
P18 MRPilot T5 Baseline T4
P19 Baseline T5 MRPilot T4
P20 Baseline T4 MRPilot T5
P21 MRPilot T5 Baseline T4

*Corresponding author, e-mail: xupengfei.cg@gmail.com

(a) (b)

(c) (d)

Figure 1: In automatic anchoring mode, labels displaying object
names will be overlaid on recognized objects (a). Once the user
confirms the anchor, the object anchor is overlaid on the corre-
sponding object (b). Users can also use hand gestures to manu-
ally anchor objects that cannot be automatically recognized (c). All
task-related objects have been properly anchored. (d)

3 STATISTICAL ANALYSIS OF USER FEEDBACK

To evaluate user workload and system usability, we employed an
adaptive version of the NASA Task Load Index (NASA-TLX) and
the System Usability Scale (SUS). Both questionnaires utilized a
5-point Likert scale. For the NASA-TLX, lower scores indicate
a better outcome (i.e., lower workload). For the SUS, individual
items were rated on a 5-point Likert scale. To compute the overall
SUS score, we first converted the responses for each item to a 0-4
scale: for positively-worded items, the score was the original rating
minus 1, and for negatively-worded items, the score was 5 minus
the original rating. These converted scores were then summed and
multiplied by 2.5 to yield a final composite score on a 0-100 point
scale, where higher scores indicate better usability. For the analysis
of individual SUS sub-items, we used a converted 1-5 point scale
where 1 consistently represented the worst usability contribution
and 5 represented the best.

Since questionnaire evaluation for NASA-TLX and SUS score
is not interval data, we use Wilcoxon Signed-Rank tests for all col-
lected scores. We report the details of the statistical results in Ta-
ble 2 and the boxplot of the overall SUS score, SUS score for each
sub-items and NASA-TLX sub-items score in Figure 2, 3, and 4.
Additionally, we report the mean and standard deviation of the man-
ual switching data and user feedback data for each task category in
Table 5 and the mean score of NASA-TLX and SUS of each task
in Table 4. However, due to the limited number of samples within
each task category, no statistical tests are conducted for these sub-
sets.

The overall statistical results indicate that MRPilot significantly
outperforms Baseline in both reducing user workload and enhanc-
ing usability. For all NASA-TLX factors, MRPilot consistently
yielded lower mean scores, reflecting reduced mental, physical, and

Table 2: The statistical results of user feedback between MRPilot and Baseline, where the p-values (+ : .050 < p < .100, ∗ : p < .050, ∗∗ :
p < .010, ∗∗∗ : p < .001) is reported. Here, Z denotes the results of Wilcoxon signed-rank tests for non-normal data.

Category Factor MRPilot Baseline Statistics

Mean SD Mean SD Z p d (Effect size) Sig.

NASA-TLX (↓)

Mental 1.571 0.811 2.476 1.123 -2.551 0.00981 0.557 **
Physical 1.667 0.913 2.524 1.209 -2.900 0.00298 0.633 **
Temporal 1.476 0.750 2.667 1.111 -2.973 0.00260 0.649 **

Performance 1.810 0.680 2.857 1.153 -2.762 0.00467 0.603 **
Effort 1.952 0.805 3.048 1.161 -2.911 0.00298 0.635 **

Frustration 1.524 0.602 2.476 1.209 -2.811 0.00417 0.614 **

SUS (↑)

Use frequently 3.476 0.928 2.190 1.123 -3.051 0.00151 0.666 **
Simple 3.905 0.700 3.143 1.195 -2.589 0.00816 0.565 **

Easy to use 3.857 0.727 2.667 1.111 -3.067 0.00188 0.669 **
Without support 4.000 1.000 3.381 1.284 -1.870 0.05515 0.408 +

Function integrated 4.143 1.062 2.476 1.289 -3.413 0.00055 0.745 ***
Consistency 4.429 0.746 3.571 1.207 -2.401 0.01491 0.524 *

Learn quickly 4.571 0.598 3.429 1.121 -3.045 0.00198 0.664 **
Intuitive 3.952 0.921 2.857 1.315 -2.533 0.00984 0.553 **

Confidence 3.476 1.209 2.381 1.024 -2.585 0.00579 0.564 **
Without learning 4.381 0.669 3.762 1.338 -1.789 0.06792 0.390 +

Overall SUS Score 75.476 11.029 49.643 21.727 -3.280 0.00103 0.716 **

Table 3: Latency statistics of different agents.

Agent Model Avg Latency (s) Min (s) Max (s) Std Dev (s)

Instruction Drafting Agent gpt-4o 5.93 1.07 15.28 1.76
Scene Analysis Agent gpt-4o 5.63 3.82 34.54 3.91
Task Structuring Agent gpt-4o 7.45 4.53 19.40 2.63
Action Recommendation Agent gpt-4o-mini 3.21 1.34 13.73 3.32

Table 4: Comparison of MRPilot and Baseline across tasks using
NASA-TLX and SUS mean score.

Task Category MRPilot Baseline

Food preparation (6) NASA 1.556 2.444
SUS 3.883 3.611

Healthcare (6) NASA 1.944 2.417
SUS 4.000 3.250

Science education (5) NASA 1.467 3.500
SUS 4.220 2.292

Manual assembly (4) NASA 1.667 2.600
SUS 4.000 2.867

temporal demands, as well as lower effort and frustration levels,
with all differences reaching statistical significance (p < .01) and
moderate to large effect sizes (e.g., Mental: 0.557; Effort: 0.635).
Similarly, for the SUS metrics, MRPilot achieved higher ratings
across key dimensions such as frequency of use, simplicity, ease of
use, and functional integration, with most differences being signifi-
cant (e.g., Function integrated: p < .001,d = 0.745; Learn quickly:
p < .01,d = 0.664), highlighting substantial improvements in intu-
itiveness and learnability. Although a few factors, such as “With-
out support” and “Without learning,” showed marginal significance
(.050 < p < .100), the overall findings provide strong evidence that
MRPilot effectively reduces user workload while improving usabil-
ity, demonstrating its practical advantages over Baseline.

Across the four tasks, MRPilot consistently demonstrated lower
cognitive workload and higher usability than Baseline, though the
extent of improvement varied by task. The Science education and
Manual assembly tasks showed the most pronounced benefits, with

MRPilot achieving the lowest NASA-TLX scores (1.467 and 1.667)
and highest SUS scores (4.220 and 4.000), suggesting that struc-
tured workflows and spatial reasoning tasks particularly benefited
from its step-by-step guidance. In comparison, the Healthcare
task, while still showing improvements (NASA-TLX: 1.944; SUS:
4.000), exhibited a slightly higher workload, likely due to the dif-
ficulty of performing fine operations, such as tearing a tap, under
the MR environment. The Food preparation task, being more rou-
tine and physically oriented, yielded moderate workload reduction
(1.556) and relatively modest usability gains (3.883). Overall, these
results highlight that MRPilot’s advantages are more pronounced
in tasks demanding clear procedural navigation and spatial sup-
port while still offering meaningful improvements in routine and
precision-focused scenarios.

4 LLM SETTINGS

4.1 LLM Latency

To ensure consistent and high-quality performance across special-
ized agents, we developed a systematic framework for testing agent
response latency. Each agent’s prompt is defined using templates in
Section 4.2 and parameterized via YAML files, enabling the gener-
ation of diverse prompt instances for robust evaluation.

For agents handling visual inputs (e.g., the Scene Analysis
Agent), the framework supports image-prompt pairing and inte-
grates with Vision APIs.

For agents with prompt parameters that represent different sys-
tem states (e.g., the Action Recommendation Agent), we evaluated
performance under a range of conditions. Specifically, we mea-
sured response latency across multiple task progression scenarios,
including initial states with all tasks pending, mid-task execution
states, and near-completion stages. This comprehensive evaluation

Table 5: By task user feedback statistics between MRPilot and Baseline. Numbers in parentheses indicate participant count per task.

Task Category Factor MRPilot Baseline

Mean SD Mean SD

Food preparation (6)

NASA-TLX (↓)

Mental 1.333 0.516 2.167 1.169
Physical 1.167 0.408 2.500 1.643
Temporal 1.333 0.516 2.000 0.894

Performance 1.667 0.816 3.000 1.549
Effort 2.333 0.516 2.667 1.033

Frustration 1.500 0.548 2.333 1.366

SUS (↑)

Use frequently 3.500 0.837 2.833 1.722
Simple 3.667 0.516 3.833 1.169

Easy to use 3.500 1.049 3.333 1.211
Without support 4.167 0.753 4.000 1.265

Function integrated 3.833 1.835 3.333 1.633
Consistency 4.167 1.169 3.833 1.169

Learn quickly 4.333 0.816 3.833 1.169
Intuitive 3.667 0.816 3.500 1.378

Confidence 3.333 0.816 3.000 1.414
Without learning 4.667 0.516 4.167 1.169

Healthcare (6)

NASA-TLX (↓)

Mental 1.667 0.816 2.000 0.894
Physical 2.167 1.169 2.167 0.753
Temporal 1.667 1.033 2.667 1.033

Performance 1.833 0.408 2.667 0.816
Effort 2.500 0.837 2.833 1.169

Frustration 1.833 0.753 2.167 1.169

SUS (↑)

Use frequently 3.167 1.472 2.000 0.632
Simple 4.333 0.816 3.500 1.225

Easy to use 4.167 0.753 2.667 1.033
Without support 3.500 1.517 3.833 1.169

Function integrated 4.167 0.753 2.167 0.753
Consistency 4.667 0.516 4.333 0.816

Learn quickly 4.667 0.516 3.667 0.816
Intuitive 4.167 0.753 3.000 1.414

Confidence 3.167 1.835 2.000 0.632
Without learning 4.000 0.894 4.333 1.211

Science education (5)

NASA-TLX (↓)

Mental 1.500 0.577 3.200 1.304
Physical 2.000 1.155 2.200 1.304
Temporal 1.500 0.577 3.000 1.000

Performance 2.000 0.816 2.200 1.095
Effort 1.500 0.577 3.000 1.414

Frustration 1.500 0.577 2.000 1.000

SUS (↑)

Use frequently 3.500 0.577 2.000 0.707
Simple 3.750 0.500 2.600 0.548

Easy to use 3.750 0.500 2.400 0.548
Without support 4.500 0.577 2.800 1.483

Function integrated 4.000 0.000 2.600 1.342
Consistency 4.250 0.500 2.800 1.483

Learn quickly 4.750 0.500 3.200 0.837
Intuitive 3.500 1.291 2.600 1.517

Confidence 3.500 0.577 2.600 0.894
Without learning 4.500 0.577 3.400 1.140

Manual assembly (4)

NASA-TLX (↓)

Mental 1.800 1.304 2.750 0.957
Physical 1.400 0.548 3.500 0.577
Temporal 1.400 0.894 3.250 1.500

Performance 1.800 0.837 3.750 0.500
Effort 1.200 0.447 4.000 0.816

Frustration 1.200 0.447 3.750 0.500

SUS (↑)

Use frequently 3.800 0.447 1.750 0.957
Simple 3.800 0.837 2.250 1.258

Easy to use 4.000 0.000 2.000 1.414
Without support 4.000 0.707 2.500 0.577

Function integrated 4.600 0.548 1.500 0.577
Consistency 4.600 0.548 3.000 0.816

Learn quickly 4.600 0.548 2.750 1.708
Intuitive 4.400 0.894 2.000 0.000

Confidence 4.000 1.225 1.750 0.500
Without learning 4.400 0.548 2.750 1.708

Figure 2: The boxplot of overall SUS score.

allowed us to assess the agent’s responsiveness and ability to handle
varying input contexts of real-world usage patterns.

All test parameters were derived from the four experimental
tasks used in our user study: Food preparation, Healthcare, Sci-
ence education, and Manual assembly. This ensured that the prompt
evaluation process remained aligned with real-world task settings
and user interaction patterns observed during empirical validation.

To quantitatively evaluate the agents’ latency, we measured the
API response latency of all four agents over 50 independent runs per
agent. The results, summarized in Table 3, provide a comparative
view of average response times across agents under standardized
test conditions, thereby enabling a fair and objective assessment of
their relative performance.

4.2 LLM Prompts
We show full prompt templates used for each agent, including In-
struction Drafting, Scene Analysis, Task Structuring, and Action
Recommendation agents passed to the LLM in Figures 5, 6, 7 and 8.

Figure 3: The boxplot of SUS score for each sub-items.

Figure 4: The boxplot of NASA-TLX score for each sub-items.

Role:

As a Task Guide Generator, your role is to assist users in completing their tasks by providing clear, detailed, and actionable

step-by-step guides.

You will analyze the user’s specific request and the items they have, then generate a tailored plan to help them accomplish their

goal.

Inputs:

${something_todo}

Instructions:

The text in the input section describes what the user wants to accomplish, along with the items that are available.

- Based on the user’s request, provide a clear and detailed step-by-step guide with precise numerical indicators for each action.

- Wherever possible, include specific quantities, counts, or measurements to further clarify each task or process. (e.g. Layer with

2 lettuce and 3 pieces of tomato, using middle fire for 5 minutes, applying 1 pump, for at least 20 seconds)

- Generate a complete list of the required items that the user will need to accomplish the task. This list should take into account

the items the user already has ONLY.

- Ensure that each step is in logical order, and if necessary, include tips or best practices to make the process smoother.

- Do not generate optional steps (e.g. If need,) or unnecessary steps (e.g. enjoy your work/ ... is ready to enjoy).

Output Example:

Item List:

1. ${item_1} - {item_1_description}

2. ${item_2} - {item_2_description}

3. ${item_3} - {item_3_description}

4. (may include more items based on the user’s request)

Step-by-Step Guide:

1. **Initial Setup**:

- Place ${item_1} on a stable surface and ensure all necessary tools are within reach.

2. **Main Process Name 1**:

- Check ${item_1} for any issues such as damage or improper setup.

- If needed, make adjustments using ${item_2}.

3. **Main Process Name 2**:

- Begin by using ${item_3} to perform the primary task, following any specific guidelines.

- Ensure everything is properly aligned/connected during the process.

4. **Main Process Name 3**:

- Make adjustments with ${item_2}.

5. (may include more steps based on the user’s request)

6. (may include more steps based on the user’s request)

7. (may include more steps based on the user’s request)

8. (may include more steps based on the user’s request)

Figure 5: Prompt of Instruction Drafting Agent.

The user wants to do: {$something_todo}

please identify the objects needed for doing this task in this image.

- ONLY output objects in the image as an unordered list.

- Do not output optional objects.

Figure 6: Prompt of Scene Analysis Agent.

Role:

Guide Organization Assistant - Structuring a guide into an organized JSON process with indexed tasks and related items.

Inputs:

‘‘‘

{$guide_text}

‘‘‘

Instructions:

Organize this guide as a process step that meets the following requirements.

- Output the organized result in JSON format.

- Subtasks/Task/Item must be indexed from index 0.

- Ensure each subtask includes related items, which cannot be null.

- Maintain a step-by-step process where each task and subtask reflects the specific instructions from the guide text as closely as

possible, without summarizing or omitting details.

- Explicitly include any quantities, counts, measurements, or time durations mentioned in the guide for each subtask. Example:

"Layer with 2 lettuce leaves and 3 tomato slices", "Use medium heat for 5 minutes", "Apply 1 pump for at least 20 seconds."

Output Example:

‘‘‘json

{

"items": [{"id": 0, "item_name": "item_name_1"}, {"id": 1, "item_name": "item_name_2"}, {"id": 2, "item_name": "item_name_3"}],

"tasks": [

{

"index": 0, "task_name": "task_name_1", "subtasks": [

{"index": 0, "subtask_name": "subtask_name_1_1", "related_items": [0]},

{"index": 1, "subtask_name": "subtask_name_1_2", "related_items": [0, 1]}

]

},

{

"index": 1, "task_name": "task_name_2", "subtasks": [

{"index": 0, "subtask_name": "subtask_name_2_1", "related_items": [1]},

{"index": 1, "subtask_name": "subtask_name_2_2", "related_items": [2]}

]

},

{

"index": 2, "task_name": "task_name_3", "subtasks": [

{"index": 0, "subtask_name": "subtask_name_3_1", "related_items": [2]},

{"index": 1, "subtask_name": "subtask_name_3_2", "related_items": [0, 1, 2]}

]

}

]

}

‘‘‘

Figure 7: Prompt of Task Structuring Agent.

Role:

You are a procedural task optimization expert. Analyze task dependencies and resource usage to recommend the most efficient next

steps, prioritizing parallelizable subtasks.

Inputs:

1. **Current Status (JSON):**

{$current_status_json}

Key Analysis Rules:

1. **Dependency Check**

- If a subtask requires specific items or steps from another task, mark it as dependent.

2. **Concurrency Criteria**

- Recommend subtasks that:

- Use **different items** than ongoing tasks

- Are in a **different task branch**

- Have no uncompleted dependencies

- If it is the very first subtask, as long as it is ‘NotStarted‘ and has no prerequisites, it should be recommended

3. **State Filtering**

- Ignore ‘Completed‘ or ‘InProgress‘ subtasks.

4. **First Subtask Rule**

- If this subtask is the first ‘NotStarted‘ subtask in the entire workflow, **always recommend it** unless there is an explicit

dependency preventing it.

Output Requirements:

- If no recommendations, return an empty list with ‘reason: "No parallelizable tasks available"‘.

- There can be multiple ‘recommended_subtasks‘

Example Output with Context:

‘‘‘json

{

"recommended_subtasks": [

{

"task_index": 2,

"subtask_index": 0,

}

]

}

‘‘‘

Figure 8: Prompt of Action Recommendation Agent.

	Object Anchor
	User Study Settings
	Statistical Analysis of User Feedback
	LLM Settings
	LLM Latency
	LLM Prompts

