Skip to content

Lecture 03-04 Transformation

2D 线性变换

  • 线性变换:变换能够用矩阵乘法得到

可以说,Linear Transformation = Matrices (of the same dimension)

我们将如下所示的简单矩阵乘法定义为对向量 \((x, y)^{T}\) 的线性变换。

\[ \left[\begin{array}{ll} a_{11} & a_{12} \\ a_{21} & a_{22} \end{array}\right]\left[\begin{array}{l} x \\ y \end{array}\right]=\left[\begin{array}{l} a_{11} x+a_{12} y \\ a_{21} x+a_{22} y \end{array}\right] \]

缩放 (scale)

缩放变换是一种沿着坐标轴作用的变换,定义如下:

\[ \operatorname{scale}\left(s_{x}, s_{y}\right)=\left[\begin{array}{cc} s_{x} & 0 \\ 0 & s_{y} \end{array}\right] \]

即除了 \((0,0)^{T}\) 保持不变之外,所有的点变为 \(\left(s_{x} x, s_{y} y\right)^{T}\)

剪切 (shearing)

shear 变换直观理解就是把物体一边固定,然后拉另外一边,定义如下:

\[ shear-x(s)=\left[\begin{array}{ll}1 & s \\ 0 & 1\end{array}\right], \\shear-y (s)=\left[\begin{array}{ll}1 & 0 \\ s & 1\end{array}\right] \]
  • 拉向 \(x\)

preview

  • 拉向 \(y\)

preview

旋转 (rotation)

  • 在无特殊说明的情况下,默认关于 \((0,0)\) 点,逆时针方向旋转 \(\theta\) 角度(弧度)的公式如下
\[ \mathbf{R}_{\theta}=\left[\begin{array}{cc} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{array}\right] \]

推导如下

image-20220807163918587

齐次坐标

  • 以上的线性变换矩阵不能描述平移变换,为了统一平移变换和线性变换(以上三种变换),引入平移变换

定义 2D 坐标和 2D向量如下

  • 2D 坐标:\((x,y,1)^T\)
  • 2D 向量:\((x,y,0)^T\)
    • 由于向量具有平移不变性,第3维的0保护了向量不会因为平移而改变

齐次坐标下向量和点的操作

  • vector + vector = vector

  • point – point = vector

  • point + vector = point (一个点沿着向量移动)

  • point + point = 两个点的中点

此外,当第三维为 \(w(w\ne 0)\)时,定义

\[ \left(\begin{array}{c} x \\ y \\ w \end{array}\right) \text { is the } 2 \mathrm{D} \text { point }\left(\begin{array}{c} x / w \\ y / w \\ 1 \end{array}\right), w \neq 0 \]

仿射变换

  • 仿射变换使用一个矩阵统一了所有操作
  • 先应用线性变换再应用平移变换

image-20220807165635765

仿射变换下 2D 变换的描述

Scale

\[ \mathbf{S}\left(s_{x}, s_{y}\right)=\left(\begin{array}{ccc} s_{x} & 0 & 0 \\ 0 & s_{y} & 0 \\ 0 & 0 & 1 \end{array}\right) \]

Rotation

\[ \mathbf{R}(\alpha)=\left(\begin{array}{ccc} \cos \alpha & -\sin \alpha & 0 \\ \sin \alpha & \cos \alpha & 0 \\ 0 & 0 & 1 \end{array}\right) \]

Translation

\[ \mathbf{T}\left(t_{x}, t_{y}\right)=\left(\begin{array}{ccc} 1 & 0 & t_{x} \\ 0 & 1 & t_{y} \\ 0 & 0 & 1 \end{array}\right) \]

逆变换

  • 使用逆矩阵
  • \(\mathbf{M}^{-1}\) is the inverse of transform \(\mathbf{M}\) in both a matrix and geometric sense

image-20220807170002153

复合变换

  • 复杂变换可由简单变换得到
  • 变换的顺序非常重要,如先旋转再平移和先平移再旋转得到的结果不同
  • 矩阵变换不满足交换律
  • 计算是右结合的

image-20220807170258067

3D 线性变换

再次使用齐次坐标描述

  • 3D point \(=(x, y, z, 1)^{T}\)
  • 3D vector \(=(x, y, z, 0)^{T}\)
  • In general, \((x, y, z, w)(w \ne0)\) is the 3D point: \((x / w, y / w, z / w)\)
    • e.g. \((1, 0, 0, 1)\) and \((2, 0, 0, 2)\) both represent \((1, 0, 0)\)
  • 先应用线性变换再应用平移变换

Use \(4 \times 4\) matrices for affine transformations

\[ \left(\begin{array}{l} x^{\prime} \\ y^{\prime} \\ z^{\prime} \\ 1 \end{array}\right)=\left(\begin{array}{lllc} a & b & c & t_{x} \\ d & e & f & t_{y} \\ g & h & i & t_{z} \\ 0 & 0 & 0 & 1 \end{array}\right) \cdot\left(\begin{array}{l} x \\ y \\ z \\ 1 \end{array}\right) \]

Scale

\[ \mathbf{S}\left(s_{x}, s_{y}, s_{z}\right)=\left(\begin{array}{cccc} s_{x} & 0 & 0 & 0 \\ 0 & s_{y} & 0 & 0 \\ 0 & 0 & s_{z} & 0 \\ 0 & 0 & 0 & 1 \end{array}\right) \]

Translation

\[ \mathbf{T}\left(t_{x}, t_{y}, t_{z}\right)=\left(\begin{array}{cccc} 1 & 0 & 0 & t_{x} \\ 0 & 1 & 0 & t_{y} \\ 0 & 0 & 1 & t_{z} \\ 0 & 0 & 0 & 1 \end{array}\right) \]

? Rotation

  • around \(x-, y-\), or \(z\)-axis

  • \(\sin \alpha\) 的正负号由右手定则确定,顺序是 \(x\to z\)

image-20220807171648045

\[ \begin{aligned} \mathbf{R}_{x}(\alpha) &=\left(\begin{array}{cccc} 1 & 0 & 0 & 0 \\ 0 & \cos \alpha & -\sin \alpha & 0 \\ 0 & \sin \alpha & \cos \alpha & 0 \\ 0 & 0 & 0 & 1 \end{array}\right) \\ \mathbf{R}_{y}(\alpha) &=\left(\begin{array}{cccc} \cos \alpha & 0 & \sin \alpha & 0 \\ 0 & 1 & 0 & 0 \\ -\sin \alpha & 0 & \cos \alpha & 0 \\ 0 & 0 & 0 & 1 \end{array}\right) \\ \mathbf{R}_{z}(\alpha) &=\left(\begin{array}{cccc} \cos \alpha & -\sin \alpha & 0 & 0 \\ \sin \alpha & \cos \alpha & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{array}\right) \end{aligned} \]
  • 所有的 3D 变换都可以被描述为在 \(x,y,z\) 轴上的旋转
    • 也叫欧拉角
    • Often used in flight simulators: roll, pitch, yaw
\[ \mathbf{R}_{x y z}(\alpha, \beta, \gamma)=\mathbf{R}_{x}(\alpha) \mathbf{R}_{y}(\beta) \mathbf{R}_{z}(\gamma) \]

image-20220807172018445

Rodrigues’ Rotation Formula

Rotation by angle \(\alpha\) around axis \(n\)

\[ \mathbf{R}(\mathbf{n}, \alpha)=\cos (\alpha) \mathbf{I}+(1-\cos (\alpha)) \mathbf{n} \mathbf{n}^{T}+\sin (\alpha) \underbrace{\left(\begin{array}{ccc} 0 & -n_{z} & n_{y} \\ n_{z} & 0 & -n_{x} \\ -n_{y} & n_{x} & 0 \end{array}\right)}_{\mathbf{N}} \]

View / Camera Transformation

Think about how to take a photo

  • Find a good place and arrange people (model transformation)
  • Find a good “angle” to put the camera (view transformation)
  • Cheese! (projection transformation 将三维空间投影到二维视图上)

Projection transformation

image-20220807172726840

Orthographic projection

正则投影的步骤

image-20220807172932379

正则立方体

  • map a cuboid \([l, r] \times [b, t] \times [f, n]\) to the “canonical (正则、规范、标准)” cube \([-1, 1]^3\)
    • 因为是朝着 \(z\) 轴负方向看,所以坐标小的是更远的 \(f\) ,坐标大的是更近的 \(n\)

image-20220807173325041

正则投影的变换矩阵

Translate (center to origin) first, then scale (length/width/height to 2)

\[ M_{\text {ortho }}=\left[\begin{array}{cccc} \frac{2}{r-l} & 0 & 0 & 0 \\ 0 & \frac{2}{t-b} & 0 & 0 \\ 0 & 0 & \frac{2}{n-f} & 0 \\ 0 & 0 & 0 & 1 \end{array}\right]\left[\begin{array}{cccc} 1 & 0 & 0 & -\frac{r+l}{2} \\ 0 & 1 & 0 & -\frac{t+b}{2} \\ 0 & 0 & 1 & -\frac{n+f}{2} \\ 0 & 0 & 0 & 1 \end{array}\right] \]

Perspective projection

透视投影的步骤

  • First “squish” the frustum into a cuboid \((n \to n, f \to f) (M_{persp\to ortho})\) (将远平面挤压为与近平面相同的大小)
    • 挤压规则
    • 近平面永远不变,任何点在近平面上不变
    • 远平面 \(z\) 值不变,任何远平面上的点 \(z\) 值不变
    • 远平面的中心不变
  • Do orthographic projection (\(M_{ortho}\)) (做正则投影)

image-20220807174933191

image-20220807175137238

透视投影的变换矩阵推导

计算机图形学二:视图变换(坐标系转化,正交投影,透视投影,视口变换)

透视投影的变换矩阵

\[ \mathrm{M}_{\text {per }}=\mathrm{M}_{\text {ortho }} \mathrm{M}_{\text {persp } \rightarrow\text { ortho }} $$ $$ \mathrm{M}_{\text {per }}=\left[\begin{array}{cccc} \frac{2}{r-l} & 0 & 0 & 0 \\ 0 & \frac{2}{t-b} & 0 & 0 \\ 0 & 0 & \frac{2}{n-f} & 0 \\ 0 & 0 & 0 & 1 \end{array}\right]\left[\begin{array}{cccc} 1 & 0 & 0 & -\frac{r+l}{2} \\ 0 & 1 & 0 & -\frac{t+b}{2} \\ 0 & 0 & 1 & -\frac{n+f}{2} \\ 0 & 0 & 0 & 1 \end{array}\right] \left[\begin{array}{cccc} n & 0 & 0 & 0 \\ 0 & n & 0 & 0 \\ 0 & 0 & n+f & -f n \\ 0 & 0 & 1 & 0 \end{array}\right] \]

Last update: July 30, 2023
Created: June 16, 2023